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Abstract. It is shown that, in the symmetric formulation of classical mechanics, the set of 
dynamical variables of the unconstrained systems constitutes a Jordan algebra under the 
plus Poisson bracket combination law defined by Droz-Vincent. For the constrained 
systems, it  is shown that the set of dynamical variables constitutes a Jordan algebra under 
the corresponding plus Dirac bracket combination law if some conditions are satisfied. 
These conditions are presented. 

1. Introduction 

It is well known that in the standard exposition of the quantisation procedure of classical 
systems, the quantisation rules are 

i 
h I 9 1- + --[ ,I- 

for unconstrained systems and 

for constrained systems, where { , }- is the usual minus Poisson bracket, { , }? the minus 
Dirac bracket (Dirac 1950, 1951, 1958, Bergmann and Goldberg 1955) and [ , 1- and 
[ , I? are commutators. They are valid only for integer-spin (Bose) systems. 

For the unconstrained classical systems, it was shown by Droz-Vincent (1966) that, 
as well as the skew-symmetric algebraic structure, there exists another symmetric 
structure. This structure is characterised by the existence of a new bracket { , }+ called 
the plus Poisson bracket. When we have constraints, Franke and Khlnay (1970) have 
shown the existence of a dual symmetric partner of the minus Dirac bracket. This new 
bracket, { , }T, is called the plus Dirac bracket. In order to close an existing gap in the 
quantisation procedure of classical systems, Ruggeri (1974) and Khlnay and Ruggeri 
(1972) have suggested that, for half-integer spin (Fermi) systems, the quantisation rules 
are 

{ 9 1++5[ , I+ 

{ 9 1:- 5 [ ,  1: 
for unconstrained systems and 
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for constrained systems, where 5 is a parameter in the theory and [ ~ ]+ and [ ,]I are 
anticommutators. 

It is also known that, for Bose-like systems, the set of classical dynamical variables of 
an unconstrained (constrained) system generates a Lie algebra with respect to the minus 
Poisson (Dirac) bracket. One concentrates on the algebraic structure (Jordan and 
Sudarshan 1961) of the dynamical variables in order to understand the basic mechanics 
of the system. Hence, in formulating the quantum theory corresponding to the 
mechanical system this algebraic structure of the dynamical variables is retained. In 
particular, it is possible to study the algebraic structure of the quantum systems with 
constraints from the corresponding structure of the unconstrained systems (Hermann 
1969). With the new plus Poisson and Dirac brackets, it is possible, in principle, to use a 
similar approach for Fermi-like systems. However, the algebraic structure for the 
symmetric brackets has not been studied sufficiently yet. 

It was pointed out by Droz-Vincent (1966) that, for systems described by plus 
Poisson brackets, the algebraic structure must be a Jordan algebra. However, it is not 
clear what the conditions are under which the classical dynamical variables constitute a 
Jordan algebra with respect to the plus Poisson or Dirac bracket. This is the basic 
purpose of the present paper. In this paper, we will not be interested in any particular 
classical system. 

2. Notations and conventions 

As in Mukunda and Sudarshan (1968), we use 

With respect to the indices for coordinates in phase space, we use for q and p the indices 
r, s, t as in q‘; for w we use the indices p,  U,. . . , T.  For the functions 4 which will be 
introduced in 8 4 we shall use the indices i, j ,  k, . . . , n. For the functions 6 we reserve a ,  
b and c. For the covariant derivative we use V. The local coordinates will be denoted by 
x , I = 1,2,  . . , , 2N ,  The sum convention for any kind of indices, as well as the 
abbreviations aI  = d/dx , aIJ = a2/ax ax and d ~ j ~  E a3/ax’  a x J  a x K ,  will be used 
systematically throughout this work. 

I 

I I J  

3. The unconstrained classical systems and the Jordan algebra 

Let clr be a 2N-dimensional manifold and f, g, . . . , h be real functions on clr. According 
to Droz-Vincent (1966), a plus Poisson bracket is defined by 

( f > M ,  g)+=(f, 8}+~VVr(M.”f’ f ) ’JJg=VJfVjg.  (3.1) 

where V is the covariant derivative in a connection r. M is a second-rank symmetric 
tensor of contravztriant type whose covariant derivative is zero. The functions f and g 
satisfy the conditions 
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For the phase space, Droz-Vincent (1966) has shown the existence of the tensor M. 
Franke and KBlnay (1970) considered the connection r = 0 and obtained foi (3.1), with 
the simplest choice of M, the particular form 

{f, g)+(W) = E Y a w f a u g  
with 

where I is the N x N unit matrix. 

are also valid for the plus Poisson brackets, that is 
It is then verified that the well known canonical rules for the minus Poisson brackets 

{q '9 qsI+ = { P n  P S I +  = Q i q r ,  P S I +  = 8:. 

In the following, we consider the approach of Droz-Vincent (1966). For simplicity, 
we take only the case r = 0. However, our results can be extended to the general case 

Let us analyse, in the present section, the set F of all dynamical variables of an 
unconstrained classical system described by the symmetric formulation of classical 
mechanics. We want to obtain the conditions, if they exist, for the set F to constitute a 
Jordan algebra with a Jordan product binary operation (see the appendix) defined by 
the plus Poisson bracket combination law. Let F ( f ,  g,  . . . , h )  be the set of dynamical 
variables. By the condition (3.2), f ,  g, . . . , h must be such that (we use l7 = 0) 

w o .  

a z J L f  = 0 aIJLg = o . . .  d,h =; 0 (3.3) 

with 1 G I ,  J ,  L 6 2N. F forms a real vector space under the addition of functions and 
ordinary multiplication of functions by real numbers. To verify the conditions involving 
the * product (Jordan product), we define this product by (r = 0) 

f * g { f ,  M, g>+ if, g>+ M"dIf aKg (3.4) 

for any f and g belonging to F. 
Since the tensor M is a symmetric tensor, it is obvious that the * product is 

commutative and in general non-associative. To analyse the identity (see the appendix) 

( f 2 * g ) * f - f 2 * ( g * f ) 4  

f 2 = f  * f ,  

with 

which must be satisfied if F is a Jordan algebra, we write for any two functions in F 

J ( f 3  g )  = { I f 2 ,  g>+, f)+ - I f 2 ,  {g ,  f)+)+ 

f 2  = v, f)+. 
with 

Then, using the relation (3.4) in (3.5) and noting that 

a z f " a a , ( f  * f ) = 2 M J K a ~ ~ f a ~ f ,  

(3.5) 
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we have, with the conditions (3.3), the following results: 

{ i f 2 ,  g}+, f ) +  = MKLMrJMPQaKpfaQrfaJgarf + MKLMrJMPQapfaQrfaKIgaLf 

and 

{ f2 ,  {g, f )+}+ = MKLMrLMPQ,pfaaKfaLrgaJf + MKLMPQMIJapf a Q K f  argaLJ f .  

Since M is a symmetric tensor, by a change of summation indices we obtain 

{i f2 ,  g)+,  f)+ = { f 2 ?  {g, f )+)+  
or 

J ( f ,  g )  = 0. 

a,(f * g )  = a,{f, g)+ = 0. 

It is also verified that if f and g E F, then 

Hence F is closed under the Jordan product (3.4). 

(3.3), as forming a Jordan algebra with respect to the plus Poisson bracket. 
We are thus led to consider the functions f ,  g, . . . , h, which satisfy the conditions 

4. Constrained classical systems and the Jordan algebra 

For systems involving constraints, the Hamiltonian equations of motion can be 
expressed in terms of Dirac brackets in the same way in which equations of motion of 
unconstrained systems can be expressed in terms of Poisson brackets (Dirac 1950, 
1951, 1958, Franke and Ktilnay 1970). Before the introduction of the Dirac brackets, 
the constraints have to be separated in two classes: the first- and second-class con- 
straints (Dirac 1950, 1951, 1958). Let us designate t a ( q , p )  as any one of the & 
constraints of a classical system. We say that ta is a symmetric first-class constraint if 

for all b, 1 S a ,  b SA, { [ a ,  '$b}+ = 0 
and that ta is a symmetric second-class constraint if there exists a b such that 

I t a ,  t b ) +  # 0 ~ S U ,  b S A .  

Let 0 ={6,(0), 02(w),  . . . , 6,(w), . . . , ONe(w)} be the set of the symmetric second- 
class constraints of a classical system. Consider now a set @ with 2N - Ne independent 
functions, & ( w ) ,  . . . , & ( U ) ,  d n ( w ) ,  . . . , ~ Z ~ - ~ @ ( W ) ,  and such that q = @U 0 is a local 
coordinate system for the phase-space manifold. If we denote the elements of P by 

$ 2 , .  . . , $,, i,bv,. . , $ZN,  it is then shown that (Franke and Kilnay 1970) 

is a second-rank symmetric tensor of covariant type where 

and U is the N x N unit matrix. 
It follows (Franke and KBlnay 1970) that LL,, has an inverse tensor My" with 

covariant derivatives restricted to the submanifold whose local coordinate system is a. 
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It is also possible to define the plus Dirac bracket by (r = 0) 

(4.1) 

In this approach, we use the fact that any function of the variables wcL can be written 
as a function of the variables 0" and 4m.  The partial differentiation with respect to a 4" 
is carried out keeping the 0"'s and the other 4"s constant. 

Notice the resemblance between (4.1) and (3.4). The difference is that in place of X I  

( 1 = 1 , 2  , . . . ,  2N) in (3 .4 ) ,wehave thedm(m=1 ,2  , . . . ,  2N-Ne)in(4.1) ,andMrJis  
replaced by MY" (e, 4 ) ,  whose derivatives are not necessarily zero. 

Let us consider now a constrained classical system described by the symmetric 
formulation of classical mechanics. Let be the corresponding set of dynamical 
variables (f(0, 4 ) ,  g(8, 4) ,  . . . , h(f3,4))  such that 

almnf = 0 aimng = 0 . . .  almnh = o (4.2) 

almn = a3/a4'a4"a4". 

with 1 S I, m, n s 2N - Ne, where 

We want to know if 9 is a Jordan algebra with the Jordan product defined by the plus 
Dirac bracket (4.1). It is obvious that 9 is a real vector space with respect to the 
addition of functions and ordinary multiplication of functions by real numbers. If we 
define in 9 the ** product (Jordan product) by 

where amf = af/a4", it follows that this product is commutative (M+ is a symmetric 
tensor) and, in general, non-associative. The axiom I1 (see the appendix) is easily 
verified. We also need to examine the identity 

( f 2  ** g) ** f - f 2  ** (g ** f )  = 0 

f 2 = f  ** f 
where 

or, in terms of the plus Dirac brackets, 
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and 

(4.5) 

To analyse if 9 is closed under the Jordan product binary operation (4.3), we 
consider the relation 

w, 4 )  =aI1k(MYn (6,4)amfang) 

where f , g c 9 ,  l s i ,  j ,  k, m, n=s2N-No.  
It follows that L (e, 4 )  = 0 if 

(aijkM7" (6 ,  4 )  +ai&f,"" (6, 4 ) a k  + aikMyn (6, 4)aj +akjM,"" (6, (#)ai 
ta,MY(e, 4 ) a k ,  +a,MY"(e, 4 ) a k l  +dkM7"(6, 4)ar,)amfang = O .  (4.6) 

We are thus led to conclude that, for constrained systems described by the 
symmetric formulation of classical mechanics, the set of dynamical variables which 
satisfies (4.2) constitutes a Jordan algebra under the plus Dirac bracket combination 
(4.1) if the conditions (4.4), (4.5) and (4.6) are satisfied. 

It is interesting to note that the relation (4.5) is satisfied if M+(B, 4 )  is independent of 
q5m ( m  = 1,2,  . . . , 2 N - N o ) .  But M+(e)  is a particular solution of the conditions (4.4), 
(4.5) and (4.6). 

5. Conclusions 

We have shown that, for unconstrained classical systems described by the symmetric 
formulation of classical mechanics, the set of all dynamical variables constitutes a real 
Jordan algebra with respect to ordinary addition and plus Poisson bracket combination. 
For constrained classical systems we have found that the set of dynamical variables is a 
Jordan algebra under ordinary addition and the plus Dirac bracket combination (4.1) if 
the conditions (4.4), (4.5) and (4.6) are satisfied. 

We note an important difference between the Lie and Jordan algebraic structure for 
classical systems. The Lie algebraic structure appears in classical mechanics in a natural 
way, but for Jordan algebra it  is different. In fact, Droz-Vincent's symmetric brackets 
are only defined for dynamical variables f such that (I- = 0) arJK f = 0 for unconstrained 
systems (1 6 I, J, K s 2N)  and aimn f = 0 for constrained systems ( 1  G I, m, r, zz 2 N  - 

Consequently, in this symmetric formulation of classical mechanics, i f f  and g are 
dynamical variables, the quantity fg = gf is not necessarily a dynamical variable. This 
result restricts the set of admissible dynamical variables in the present theory. However, 
our result is not worse than the usual theory with minus Poisson brackets. Indeed, as 
Streater (1966) has shown, the Dirac quantisation procedure for minus Poisson 
brackets is also only possible for a restricted set of dynamical variables. 
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Appendix 

In this appendix, for the sake of completeness, we present the definition of the Jordan 
algebra (Jordan et a1 1934, Albert 1934, Jacobson 1949). 

Definition. Let A be the set {a ,  b, c, . . .}. If 
(I) A is a real vector space; 

(IT) in A is defined a * product (Jordan product) such that ( a  i- b) * c = a * c + b * c ; 

(111) the * product (Jordan product) is such that the following three conditions are 
A(a * b )  = (Aa)  * b = a * (Ab) where A is a real number; 

satisfied: 
(i) a * b = b * a (commutative); 

(ii) ( a  * b )  * c # a * ( b  * c )  in general (non-associative); 
(iii) ( a 2  * b )  * a = a * ( b  * a )  where a 2  = a * a ;  2 

then A is a real Jordan algebra. 
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